Absolute convergence

Definition A series $\sum a_{n}$ is called absolutely convergent if the series of absolute values $\sum\left|a_{n}\right|$ is convergent.
If the terms of the series a_{n} are positive, absolute convergence is the same as convergence.

Example Are the following series absolutely convergent?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

- To check if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}$ is absolutely convergent, we need to check if the series of absolute values $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is convergent.
- Since $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a p -series with $p=3>1$, it converges and therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}$ is absolutely convergent.
- To check if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is absolutely convergent, we need to check if the series of absolute values $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent.
- Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series with $p=1$, it diverges and therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is not absolutely convergent.

Conditional convergence

Definition A series $\sum a_{n}$ is called conditionally convergent if the series is convergent but not absolutely convergent.
Which of the series in the above example is conditionally convergent?

- Since the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}$ is absolutely convergent, it is not conditionally convergent.
- Since the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is convergent (used the alternating series test last day to show this), but the series of absolute values $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is conditionally convergent.

Absolute conv. implies conv.

Theorem If a series is absolutely convergent, then it is convergent, that is if $\sum\left|a_{n}\right|$ is convergent, then $\sum a_{n}$ is convergent.
(A proof is given in your notes)
Example Are the following series convergent (test for absolute convergence)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}, \quad \sum_{n=1}^{\infty} \frac{\sin (n)}{n^{4}}
$$

- Since $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}$ is absolutely convergent, we can conclude that this series is convergent.
- To check if the series $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{4}}$ is absolutely convergent, we consider the series of absolute values $\sum_{n=1}^{\infty}\left|\frac{\sin (n)}{n^{4}}\right|$.
- Since $0 \leq|\sin (n)| \leq 1$, we have $0 \leq\left|\frac{\sin (n)}{n^{4}}\right| \leq \frac{1}{n^{4}}$.
- Therefore the series $\sum_{n=1}^{\infty}\left|\frac{\sin (n)}{n^{4}}\right|$ converges by comparison with the converging p-series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
- Therefore the series $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{4}}$ is convergent since it is absolutely convergent.

The Ratio Test

This test is useful for determining absolute convergence.
Let $\sum_{n=1}^{\infty} a_{n}$ be a series (the terms may be positive or negative).
Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.

- If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely (and hence is convergent).
- If $L>1$ or ∞, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- If $L=1$, then the Ratio test is inconclusive and we cannot determine if the series converges or diverges using this test.

This test is especially useful where factorials and powers of a constant appear in terms of a series. (Note that when the ratio test is inconclusive for an alternating series, the alternating series test may work.)
Example 1 Test the following series for convergence

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{n}}{n!}
$$

$-\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} /(n+1)!}{2^{n} / n!}\right|=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0<1$.

- Therefore, the series converges.

Example 2

Ratio Test Let $\sum_{n=1}^{\infty} a_{n}$ be a series (the terms may be positive or negative).
Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
If $L>1$ or ∞, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
If $L=1$, then the Ratio test is inconclusive.
Example 2 Test the following series for convergence

$$
\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n}{5^{n}}\right)
$$

$-\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) / 5^{n+1}}{n / 5^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{5 n}=$

$$
\frac{1}{5} \lim _{n \rightarrow \infty}(1+1 / n)=\frac{1}{5}<1
$$

- Therefore, the series converges.

Example 3

Example 3 Test the following series for convergence $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
$-\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{n+1} /(n+1)!}{n^{n} / n!}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)(n+1)^{n}}{(n+1) n!} \cdot \frac{n!}{n^{n}}=$ $\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.
$-\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty} e^{x \ln (1+1 / x)}=e^{\lim _{x \rightarrow \infty} x \ln (1+1 / x)}$.
$\lim _{x \rightarrow \infty} x \ln (1+1 / x)=\lim _{x \rightarrow \infty} \frac{\ln (1+1 / x)}{1 / x}=\left(L^{\prime} H o p\right) \lim _{x \rightarrow \infty} \frac{\frac{-1 / x^{2}}{(1+1 / x)}}{-1 / x^{2}}=$ $\lim _{x \rightarrow \infty} \frac{1}{(1+1 / x)}=1$.

- Therefore $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e^{1}=e>1$ and the series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$ diverges.

Example 4

Example 4 Test the following series for convergence $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$

- We know already that this series converges absolutely and therefore it converges. (we could also use the alternating series test to deduce this).
- Lets see what happens when we apply the ratio test here.
- $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1 /(n+1)^{2}}{1 / n^{2}}\right|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2}=$
$\lim _{n \rightarrow \infty}\left(\frac{1}{1+1 / n}\right)^{2}=1$.
- Therefore the ratio test is inconclusive here.

The Root Test

Root Test Let $\sum_{n=1}^{\infty} a_{n}$ be a series (the terms may be positive or negative).

- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely (and hence is convergent).
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, then the Root test is inconclusive and we cannot determine if the series converges or diverges using this test.
Example 5 Test the following series for convergence $\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{2 n}{n+1}\right)^{n}$
- $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{2 n}{n+1}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{2 n}{n+1}=\lim _{n \rightarrow \infty} \frac{2}{1+1 / n}=$ $2>1$
- Therefore by the n th root test, the series $\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{2 n}{n+1}\right)^{n}$ diverges.

Example 6

Root Test For $\sum_{n=1}^{\infty} a_{n} . L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$.
If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
If $L>1$ or ∞, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
If $L=1$, then the Root test is inconclusive.
Example 6 Test the following series for convergence $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+1}\right)^{n}$
$-\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n}{2 n+1}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\lim _{n \rightarrow \infty} \frac{1}{2+1 / n}=$ $1 / 2<1$

- Therefore by the n th root test, the series $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+1}\right)^{n}$ converges.

Example 7

Root Test For $\sum_{n=1}^{\infty} a_{n} . L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$.
If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
If $L>1$ or ∞, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
If $L=1$, then the Root test is inconclusive.
Example 7 Test the following series for convergence $\sum_{n=1}^{\infty}\left(\frac{\ln n}{n}\right)^{n}$.

- $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{\ln n}{n}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{x \rightarrow \infty} \frac{\ln x}{x}=$ ($L^{\prime} H o p$) $\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0<1$
- Therefore by the n th root test, the series $\sum_{n=1}^{\infty}\left(\frac{\ln n}{n}\right)^{n}$ converges.

Rearranging sums

If we rearrange the terms in a finite sum, the sum remains the same. This is not always the case for infinite sums (infinite series). It can be shown that:

- If a series $\sum a_{n}$ is an absolutely convergent series with $\sum a_{n}=s$, then any rearrangement of $\sum a_{n}$ is convergent with sum s.
- It a series $\sum a_{n}$ is a conditionally convergent series, then for any real number r, there is a rearrangement of $\sum a_{n}$ which has sum r.
- Example The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}$ is absolutely convergent with $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}=\frac{2}{3}$ and hence any rearrangement of the terms has sum $\frac{2}{3}$.

Rearranging sums

- It a series $\sum a_{n}$ is a conditionally convergent series, then for any real number r, there is a rearrangement of $\sum a_{n}$ which has sum r.
- Example Alternating Harmonic series $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is conditionally convergent, it can be shown that its sum is $\ln 2$,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\cdots+(-1)^{n} \frac{1}{n}+\cdots=\ln 2 .
$$

- Now we rearrange the terms taking the positive terms in blocks of one followed by negative terms in blocks of 2

$$
\begin{gathered}
1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\frac{1}{7} \cdots= \\
\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\left(\frac{1}{7}-\frac{1}{14}\right)-\cdots=
\end{gathered}
$$

$$
\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\cdots+(-1)^{n} \frac{1}{n}+\ldots\right)=\frac{1}{2} \ln 2
$$

- Obviously, we could continue in this way to get the series to sum to any number of the form $(\ln 2) / 2^{n}$.

