
Absolute convergence

Definition A series
P

an is called absolutely convergent if the series of
absolute values

P
|an| is convergent.

If the terms of the series an are positive, absolute convergence is the same as
convergence.

Example Are the following series absolutely convergent?

∞X
n=1

(−1)n+1

n3
,

∞X
n=1

(−1)n

n
.

I To check if the series
P∞

n=1
(−1)n+1

n3 is absolutely convergent, we need to
check if the series of absolute values

P∞
n=1

1
n3 is convergent.

I Since
P∞

n=1
1
n3 is a p-series with p = 3 > 1, it converges and thereforeP∞

n=1
(−1)n+1

n3 is absolutely convergent.

I To check if the series
P∞

n=1
(−1)n

n
is absolutely convergent, we need to

check if the series of absolute values
P∞

n=1
1
n

is convergent.

I Since
P∞

n=1
1
n

is a p-series with p = 1, it diverges and thereforeP∞
n=1

(−1)n

n
is not absolutely convergent.
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Conditional convergence

Definition A series
P

an is called conditionally convergent if the series is
convergent but not absolutely convergent.

Which of the series in the above example is conditionally convergent?

I Since the series
P∞

n=1
(−1)n+1

n3 is absolutely convergent, it is not
conditionally convergent.

I Since the series
P∞

n=1
(−1)n

n
is convergent (used the alternating series test

last day to show this), but the series of absolute values
P∞

n=1
1
n

is not

convergent, the series
P∞

n=1
(−1)n

n
is conditionally convergent.
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Absolute conv. implies conv.

Theorem If a series is absolutely convergent, then it is convergent, that is
if
P
|an| is convergent, then

P
an is convergent.

(A proof is given in your notes)

Example Are the following series convergent (test for absolute convergence)

∞X
n=1

(−1)n+1

n3
,

∞X
n=1

sin(n)

n4
.

I Since
P∞

n=1
(−1)n+1

n3 is absolutely convergent, we can conclude that this
series is convergent.

I To check if the series
P∞

n=1
sin(n)

n4 is absolutely convergent, we consider the

series of absolute values
P∞

n=1

˛̨̨
sin(n)

n4

˛̨̨
.

I Since 0 ≤ | sin(n)| ≤ 1, we have 0 ≤
˛̨̨

sin(n)

n4

˛̨̨
≤ 1

n4 .

I Therefore the series
P∞

n=1

˛̨̨
sin(n)

n4

˛̨̨
converges by comparison with the

converging p-series
P∞

n=1
1
n4 .

I Therefore the series
P∞

n=1
sin(n)

n4 is convergent since it is absolutely
convergent.
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The Ratio Test

This test is useful for determining absolute convergence.

Let
P∞

n=1 an be a series (the terms may be positive or negative).

Let L = limn→∞

˛̨̨
an+1

an

˛̨̨
.

I If L < 1, then the series
P∞

n=1 an converges absolutely (and hence is
convergent).

I If L > 1 or ∞, then the series
P∞

n=1 an is divergent.

I If L = 1, then the Ratio test is inconclusive and we cannot determine if
the series converges or diverges using this test.

This test is especially useful where factorials and powers of a constant appear
in terms of a series. (Note that when the ratio test is inconclusive for an
alternating series, the alternating series test may work. )

Example 1 Test the following series for convergence
∞X
n=1

(−1)n−1 2n

n!

I limn→∞

˛̨̨
an+1

an

˛̨̨
= limn→∞

˛̨̨
2n+1
‹

(n+1)!

2n
‹

n!

˛̨̨
= limn→∞

2
n+1

= 0 < 1.

I Therefore, the series converges.
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Example 2

Ratio Test Let
P∞

n=1 an be a series (the terms may be positive or negative).

Let L = limn→∞

˛̨̨
an+1

an

˛̨̨
.

If L < 1, then the series
P∞

n=1 an converges absolutely.
If L > 1 or ∞, then the series

P∞
n=1 an is divergent.

If L = 1, then the Ratio test is inconclusive.

Example 2 Test the following series for convergence

∞X
n=1

(−1)n
“ n

5n

”

I limn→∞

˛̨̨
an+1

an

˛̨̨
= limn→∞

˛̨̨
(n+1)

‹
5n+1

n
‹

5n

˛̨̨
= limn→∞

n+1
5n

=

1
5

limn→∞(1 + 1/n) = 1
5

< 1.

I Therefore, the series converges.
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Example 3

Example 3 Test the following series for convergence
P∞

n=1
nn

n!

I limn→∞

˛̨̨
an+1

an

˛̨̨
= limn→∞

˛̨̨
(n+1)n+1

‹
(n+1)!

nn
‹

n!

˛̨̨
= limn→∞

(n+1)(n+1)n

(n+1)n!
· n!

nn =

limn→∞

“
n+1
n

”n

= limn→∞

“
1 + 1

n

”n

= limx→∞

“
1 + 1

x

”x

.

I limx→∞

“
1 + 1

x

”x

= limx→∞ ex ln(1+1/x) = e limx→∞ x ln(1+1/x).

limx→∞ x ln(1 + 1/x) = limx→∞
ln(1+1/x)

1/x
= (L′Hop) limx→∞

−1/x2

(1+1/x)

−1/x2 =

limx→∞
1

(1+1/x)
= 1.

I Therefore limn→∞

˛̨̨
an+1

an

˛̨̨
= limx→∞

“
1 + 1

x

”x

= e1 = e > 1 and the seriesP∞
n=1

nn

n!
diverges.
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Example 4

Example 4 Test the following series for convergence
P∞

n=1
(−1)n

n2

I We know already that this series converges absolutely and therefore it
converges. (we could also use the alternating series test to deduce this).

I Lets see what happens when we apply the ratio test here.

I limn→∞

˛̨̨
an+1

an

˛̨̨
= limn→∞

˛̨̨
1
‹

(n+1)2

1
‹

n2

˛̨̨
= limn→∞

“
n

n+1

”2

=

limn→∞

“
1

1+1/n

”2

= 1.

I Therefore the ratio test is inconclusive here.
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The Root Test

Root Test Let
P∞

n=1 an be a series (the terms may be positive or negative).

I If limn→∞
n
p
|an| = L < 1, then the series

P∞
n=1 an converges absolutely

(and hence is convergent).

I If limn→∞
n
p
|an| = L > 1 or limn→∞

n
p
|an| =∞, then the series

P∞
n=1 an

is divergent.

I If limn→∞
n
p
|an| = 1, then the Root test is inconclusive and we cannot

determine if the series converges or diverges using this test.

Example 5 Test the following series for convergence
P∞

n=1(−1)n−1
“

2n
n+1

”n

I limn→∞
n
p
|an| = limn→∞

n

r“
2n

n+1

”n

= limn→∞
2n

n+1
= limn→∞

2
1+1/n

=

2 > 1

I Therefore by the n th root test, the series
P∞

n=1(−1)n−1
“

2n
n+1

”n

diverges.
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Example 6

Root Test For
P∞

n=1 an. L = limn→∞
n
p
|an|.

If L < 1, then the series
P∞

n=1 an converges absolutely.
If L > 1 or ∞, then the series

P∞
n=1 an is divergent.

If L = 1, then the Root test is inconclusive.

Example 6 Test the following series for convergence
P∞

n=1

“
n

2n+1

”n

I limn→∞
n
p
|an| = limn→∞

n

r“
n

2n+1

”n

= limn→∞
n

2n+1
= limn→∞

1
2+1/n

=

1/2 < 1

I Therefore by the n th root test, the series
P∞

n=1

“
n

2n+1

”n

converges.
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Example 7

Root Test For
P∞

n=1 an. L = limn→∞
n
p
|an|.

If L < 1, then the series
P∞

n=1 an converges absolutely.
If L > 1 or ∞, then the series

P∞
n=1 an is divergent.

If L = 1, then the Root test is inconclusive.

Example 7 Test the following series for convergence
P∞

n=1

“
ln n
n

”n

.

I limn→∞
n
p
|an| = limn→∞

n

r“
ln n
n

”n

= limn→∞
ln n
n

= limx→∞
ln x
x

=

(L′Hop) limx→∞
1/x
1

= 0 < 1

I Therefore by the n th root test, the series
P∞

n=1

“
ln n
n

”n

converges.
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Rearranging sums

If we rearrange the terms in a finite sum, the sum remains the same. This is
not always the case for infinite sums (infinite series). It can be shown that:

I If a series
P

an is an absolutely convergent series with
P

an = s, then any
rearrangement of

P
an is convergent with sum s.

I It a series
P

an is a conditionally convergent series, then for any real
number r , there is a rearrangement of

P
an which has sum r .

I Example The series
P∞

n=1
(−1)n

2n is absolutely convergent withP∞
n=1

(−1)n

2n = 2
3

and hence any rearrangement of the terms has sum 2
3
.
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Rearranging sums

I It a series
P

an is a conditionally convergent series, then for any real
number r , there is a rearrangement of

P
an which has sum r .

I Example Alternating Harmonic series
P∞

n=1
(−1)n−1

n
is conditionally

convergent, it can be shown that its sum is ln 2,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · ·+ (−1)n 1

n
+ · · · = ln 2.

I Now we rearrange the terms taking the positive terms in blocks of one
followed by negative terms in blocks of 2

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
· · · =“

1− 1

2

”
− 1

4
+
“1

3
− 1

6

”
− 1

8
+
“1

5
− 1

10

”
− 1

12
+
“1

7
− 1

14

”
− · · · =

I

1

2

“
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · ·+ (−1)n 1

n
+ . . . ) =

1

2
ln 2.

I Obviously, we could continue in this way to get the series to sum to any
number of the form (ln 2)/2n.
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